15.10 - 18:25

Лобовое сопротивление воздуха подняло верхний конец вращающейся цепочки


 

Французские физики объяснили, почему конец замкнутой вращающейся цепочки самопроизвольно поднимается: оказалось, что этот эффект возникает из-за лобового сопротивления воздуха. Кроме того, ученые исследовали образование волн в такой цепочке и предложили измерять с их помощью силу натяжения. По словам исследователей, полученные результаты могут пригодиться на практике — например, при расчете движения шланга дозаправки самолетов. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics.

Хотя подвешенная цепочка (или веревка, что в каком-то приближении одно и то же) кажется очень простым объектом, в действительности с ней связанно множество интересных эффектов. Вероятно, самый необычный из них — это так называемый «фонтан из цепочки»: если сложить цепочку в стакан и выдернуть свободный конец, то она изогнется дугой и будет сохранять приобретенную форму, пока полностью не «выльется» из стакана. В сущности, складывать цепочку в стакан даже не обязательно, можно просто разложить ее на плоскости. Кроме того, ученые часто исследуют, как цепочка скатывается с гладкой поверхности — оказывается, что в некоторых случаях это движение также происходит парадоксальным образом. Например, если скатывающаяся цепочка изначально была сложена пополам, то в какой-то момент ускорение сложенного участка превысит ускорение свободного падения.

Более того, некоторые современные технологии полагаются на движение тонких и гибких объектов, — фактически тех же цепочек, погруженных в жидкость или газ. В частности, такую форму имеют ультразвуковой дальномер, с помощью которого корабль контролирует глубину дна, и шланг, с помощью которого самолет можно дозаправить в воздухе. Движение такого объекта определяется соотношением между силами гравитационного притяжения, сопротивления среды, натяжения кабеля и изгибных напряжений. В общем случае теоретически рассчитать поведение цепочки, помещенной в такие условия, довольно сложно.

Поэтому группа физиков под руководством Николя Плиона (Nicolas Plihon) экспериментально исследовала движение цепочки в воздухе, и ухватила несколько общих закономерностей, которые ей управляют. Чтобы упростить задачу, ученые рассмотрели движение замкнутой цепочки, зажатой между вращающимися колесиками и разогнанной до постоянной скорости v (так как цепочка была почти нерастяжимой, модуль скорости всех ее точек совпадал). В качестве цепочки ученые выбирали тяжелые бусы или легкий хлопковый шнурок. Поскольку во время движения цепочка не покидает вертикальную плоскость, ее форму можно описать, задавая в каждой точке угол между бесконечно малым элементом цепочки и горизонталью. При этом естественно выделить точку, в которой цепочка поворачивает под углом 90 градусов к горизонтали (точка O на рисунке), и выделить в ней исходящую (кривая AO) и входящую (кривая OB) часть.

Очевидно, что движением цепочки управляет три силы — вес цепочки, тянущий ее вниз, сила натяжения, направленная вдоль цепочки, и лобовое сопротивление воздуха, направленное против движения цепочки. Ученые подчеркивают, что из-за симметрии задачи подъемной силой можно пренебречь. Также авторы отмечают, что натяжение цепочки удобно разбить на кинетический вклад, связанный с движением, и дополняющий его до полного натяжения эффективный вклад. С помощью этих обозначений уравнения движения можно свести к безразмерным величинам, с которыми гораздо удобнее работать.
В зависимости от соотношения между двумя внешними силами — силой тяжести и силой сопротивления — физики выделили две принципиально разных ситуации. В первом случае, когда силой сопротивления воздуха можно было пренебречь, профиль шнурка практически не зависел от скорости и сводился к обыкновенной цепной линии. Единственное отличие этого случая от статического заключалось в том, что натяжение цепной линии сдвигалось на кинетическое натяжение.

nplus1.ru

Ключевые слова:

Справочная информация

Загрузка...